The effect of dietary fish oils on development of hypertension and vascular response in vitro were studied in rats and a primate. Dietary fish oils (MaxEPA and an n-3 ethyl ester concentrate of higher EPA and DHA content) were administered to spontaneously hypertensive (SHR), stroke-prone spontaneously hypertensive (SHR-SP) and a backcross of SHR and Wistar Kyoto (SHR/WKY) rats from 4-16 weeks of age. Blood pressure was monitored during the feeding period and vascular responses measured in the aorta and mesenteric vascular bed in vitro. Depending on the strain of rat used and the composition of the fish oil the attenuation in blood pressure was 10-26 mmHg. Fish oils attenuated the response mediated by sympathetic nerve stimulation or intralumenal norepinephrine in the perfused mesenteric vascular bed preparation from the SHR. This attenuation was more pronounced for fish oils enriched with eicosapentaenoic acid and docosahexaenoic acid and was more prominent in the SHR and SHR/WKY backcross than it was in the SHR-SP. Prostanoid synthesis or nitric oxide modulation of alpha-adrenoceptor responses were shown not to be involved in the attenuation of vascular responses produced by fish oil. The maximum contraction of aortic ring preparations in response to norepinephrine (NE) was significantly smaller in SHR than WKY rats fed olive oil and for SHR rats maintained on fish oils the contraction was close to WKY olive oil values. Evidence was obtained also for a modulation of vasoconstrictor responses by dietary fish oils in the perfused mesenteric bed of the marmoset monkey.