OBJECTIVE:
Plant-derived α-linolenic acid (ALA) may constitute an attractive cardioprotective alternative to fish-derived n-3 fatty acids. However, the effect of dietary ALA on arterial thrombus formation remains unknown.

METHODS AND RESULTS:
Male C57Bl/6 mice were fed a high-ALA or low-ALA diet for 2 weeks. Arterial thrombus formation was delayed in mice fed a high-ALA diet compared with those on a low-ALA diet (n=7; P<0.005). Dietary ALA impaired platelet aggregation to collagen and thrombin (n=5; P<0.005) and decreased p38 mitogen-activated protein kinase activation in platelets. Dietary ALA impaired arterial tissue factor (TF) expression, TF activity, and nuclear factor-κB activity (n=7; P<0.05); plasma clotting times and plasma thrombin generation did not differ (n=5; P=not significant). In cultured human vascular smooth muscle and endothelial cells, ALA inhibited TF expression and activity (n=4; P<0.01). Inhibition of TF expression occurred at the transcriptional level via the mitogen-activated protein kinase p38 in smooth muscle cells and p38, extracellular signal-regulated kinases 1 and 2, and c-Jun N-terminal kinases 1 and 2 in endothelial cells.

CONCLUSIONS:
ALA impairs arterial thrombus formation, TF expression, and platelet activation and thereby represents an attractive nutritional intervention with direct dual antithrombotic effects.