Targeting cancer stem cells is of paramount importance in successfully preventing cancer relapse. Recently, in silico screening of public gene-expression datasets identified cyclooxygenase-derived cyclopentenone prostaglandins (CyPGs) as likely agents to target malignant stem cells.

We show here that Δ(12)-PGJ(3), a novel and naturally produced CyPG from the dietary fish-oil ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA; 20:5) alleviates the development of leukemia in 2 well-studied murine models of leukemia.

IP administration of Δ(12)-PGJ(3) to mice infected with Friend erythroleukemia virus or those expressing the chronic myelogenous leukemia oncoprotein BCR-ABL in the hematopoietic stem cell pool completely restored normal hematologic parameters, splenic histology, and enhanced survival. More importantly, Δ(12)-PGJ(3) selectively targeted leukemia stem cells (LSCs) for apoptosis in the spleen and BM. This treatment completely eradicated LSCs in vivo, as demonstrated by the inability of donor cells from treated mice to cause leukemia in secondary transplantations.

Given the potency of ω-3 polyunsaturated fatty acid-derived CyPGs and the well-known refractoriness of LSCs to currently used clinical agents, Δ(12)-PGJ(3) may represent a new chemotherapeutic for leukemia that targets LSCs.